A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
نویسندگان
چکیده
We have developed a simple multi-layer microfluidic device by integrating a polydimethyl siloxane (PDMS) microfluidic channel and a porous membrane substrate to culture and analyze the renal tubular cells. As a model cell type, primary rat inner medullary collecting duct (IMCD) cells were cultured inside the channel. To generate in vivo-like tubular environments for the cells, a fluidic shear stress of 1 dyn/cm(2) was applied for 5 hours, allowing for optimal fluidic conditions for the cultured cells, as verified by enhanced cell polarization, cytoskeletal reorganization, and molecular transport by hormonal stimulations. These results suggest that the microfluidic device presented here is useful for resembling an in vivo renal tubule system and has potential applications in drug screening and advanced tissue engineering.
منابع مشابه
Microalgal Culture, Lipid Production and Extraction Using an Integrated Microfluidic System
We present a novel method for simple and efficient lipid analysis by integrating multi-process including microalgal culture, lipid production and lipid extraction on a single microfluidic device. We devised a double-layered PDMS device, composed of cell culture chamber and connecting channel filled with micropillar array between culture chamber and output reservoir. Lipid accumulation was induc...
متن کاملطراحی و ساخت سیستم میکروفلوییدی و ارزیابی قابلیت آن جهت تولید اینترلوکین 2 توسط سلول های جورکت
Background and purpose: Microfluidic systems are microstructures that could be used to improve the conventional cell culture protocols used in laboratories. The aim of this research was to design and construct the microfluidic system and evaluating its ability to produce IL-2 by jurkat cells. Material and methods: At first, the sketch of microfluidic canals was designed by Corel draw and wa...
متن کاملC0lc00005a 2651..2654
We have developed a multi-layer, microfluidic array platform containing concave microwells and flat cell culture chambers to culture embryonic stem (ES) cells and regulate uniform-sized embryoid body (EB) formation. The main advantage of this platform was that EBs cultured within the concave microwells of a bottom layer were automatically replated into flat cell culture chambers of a top layer,...
متن کاملFluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells
Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...
متن کاملNumerical analysis of reactant transport in the novel tubular polymer electrolyte membrane fuel cells
In present work, numerical analysis of three novel PEM fuel cells with tubular geometry was conducted. Tree different cross section was considered for PEM, namely: circular, square and triangular. Similar boundary and operational conditions is applied for all the geometries. At first, the obtained polarization curve for basic architecture fuel cells was validated with experimental data and then...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 10 1 شماره
صفحات -
تاریخ انتشار 2010